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Weakly disordered absorbing-state phase transitions
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The effects of quenched disorder on nonequilibrium phase transitions in the directed percolation universality
class are revisited. Using a strong-disorder energy-space renormalization-group method, it is shown that for
any amount of disorder the critical behavior is controlled by an infinite-randomness fixed point in the same
universality class of the random transverse-field Ising models.
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Using the formalism and the knowledge of equilibrium
phase transitions, a natural trend with the aim of establishing
and classifying possible universality classes in nonequilib-
rium transitions arose [1,2]. It was conjectured that the criti-
cal behavior of short-ranged interacting models with scalar
order parameter and absence of conservation laws and extra
symmetries are in the directed percolation universality class
[3-5], which separates an active fluctuating state from an
inactive (absorbing) nonfluctuating one [6]. Examples in-
clude transitions in the contact process [7], catalytic reac-
tions [8], depinning interface growth [9,10], and marginal
growth of turbulent domains in laminar flows [11].

Despite the theoretical understanding on the ubiquitous
directed percolation universality class, its critical exponents
have hardly been seen in real experiments [12] (see, how-
ever, Ref. [13]). It was then suspected that quenched disorder
may be responsible. For spatial dimension d <4, this is in-
deed the case as dictated by the Harris criterion [14—16] and
confirmed by field-theoretical methods [17], which showed
that the renormalization-group equations have only runaway
solutions towards large disorder. In addition, disorder-
dependent Griffiths-like phases [18,19] nearby criticality
have been observed [16,20-25].

This scenario thus points out an unconventional critical
behavior originating from the interplay between large spatial
disorder fluctuations and strong correlations. Motivated by
this reasoning, a strong-disorder renormalization-group
(SDRG) method [26,27] was applied to the random contact
process model [28]. For strong disorder, the critical behavior
is governed by a universal infinite-randomness fixed point
(IRFP) in the same universality class of the random
transverse-field Ising model, whose dynamical scaling is
known to be activated [29-31], i.e., length £ and time 7 are
related through In 7~ &”, with ¢ (dubbed tunneling expo-
nent) being universal. For weak disorder, on the other hand,
the critical point has finite disorder and usual power-law
scaling 7~ & with nonuniversal dynamical exponent z pro-
portional to the disorder strength and is formally infinite at
the transition between the weak- and strong-disorder limits.
These conclusions were also supported by density-matrix
renormalization-group calculations in d=1 [28]. Further
Monte Carlo calculations in d=2 confirmed the above sce-
nario. However, the possibility that the weak-disorder regime
was an artifact of finite-size effects was raised [32].

Facing the logarithmically slow dynamics, large-scale
Monte Carlo simulations in d=1 for system sizes up to 10’
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sites and times up to 10° were performed [33]. No nonuni-
versal weak-disorder critical regime was found, shrinking
considerably the parameter space in which it would exist
and, together with the field-theoretical results, strongly sug-
gesting its nonexistence. It then raises the following puzzle.
How can the SDRG suggest a finite-disordered fixed point
while Monte Carlo simulations point to an infinite-disordered
one? Since the SDRG method is devised to include any mini-
mal effects of disorder, it should be able to capture the phys-
ics of any IRFP as well as to point out its existence.

This Brief Report is devoted to solve this question. In
generalizing the SDRG method, we show that the critical
system is governed by a universal IRFP when any amount of
disorder is present. Moreover, our motivation goes beyond
the issue of settling the correct universality class of weakly
disordered absorbing-state phase transitions. It deals with the
delicate issue of implementing a SDRG in such a limit,
which is an important tool to tackle many disordered sys-
tems.

For definiteness, we now introduce the system, review the
usual SDRG for random contact process [28], point out its
failure, and modify it in order to overcome this problem.

The contact process can be defined in a lattice in which
each site i can have either a healed (o;=1) or an infected
(0;=—1) particle. A healed particle at site i can be contami-
nated by an infected one in a neighboring site j at rate \;;
=\;; [44]. Also, an infected particle at site i can get sponta-
neously healed at rate w;. The system has a stochastic dy-
namics governed by a master equation JP{c},1)
=-HP({o},7) where the vector P gives the probability of
finding the configuration {o}=(0,0,,...) at time r and

H=E#[Mi+2 Nij(n,Q;+ Oin)) (1)
i (i)

is the generator of the Markov process [32,34,35]. Here,

M_(o —1) _(0 0) _(1 0)
o 1) "o 1) 271 o)

and (i, j) restricts the sum to nearest neighbors only.

The usefulness of this “quantum Hamiltonian formalism”
comes from the fact that the steady state probability distri-
bution P({c},t— ) coincides with ground state of H and
that the long-time relaxation properties are obtained from the
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low-lying spectrum of H. Although H is in general non-
Hermitian, some standard methods can still be used.

For the disordered case, \;; and w; are random indepen-
dent variables distributed according to P(\) and R(uw), re-
spectively. In this case, the low-lying spectrum of H can be
reached by the following recipe (for simplicity, we focus on
the d=1 case): (i) search for the fastest (‘“high-energy”) scale
in the system Q=max{\;,;}, (ii) integrate out locally the
corresponding mode, and (iii) renormalize the remaining de-
grees of freedom. Those steps are the basis of the SDRG
method [36].

When (ii.a) (1=N\,, particles on sites 2 and 3 can be con-
sidered as one since they will be mostly in the same state,
i.e., either both healed or both infected. Then, (iii.a) one
treats Hy=\,(n,03+Q,n3) exactly and H,=u,M,+ usM5 as
a perturbation. H, has two twofold multiplets. In the ground
(excited) one, particles 2 and 3 are in the same (opposite)
state. H, lifts the degeneracy of the ground multiplet, which
corresponds to the effective healing rate i of particle cluster
2 and 3. In second order of perturbation theory, one finds that

H, =M, with

A= Kupops/Ny,  with K, =2. (2)

When (ii.b) = pu,, the particle at site 2 can be considered
as healed for all times. Hence (iii.b) one treats Hy=u,M,
exactly and H;=\;(n;Q,+Qn,) + N, (n,Q3+Q,ns3) perturba-
tively. H has two fourfold multiplets. The ground (excited)
one refers to particle 2 healed (infected). H, then lifts the
degeneracy which corresponds to an effective infection rate

X between particles 1 and 3. In second order of perturbation
the()ry ﬁl = 5\"(le3+ Q1n3), with

N= NN/, with gy = 1. (3)

Once set the recursion relations (2) and (3), flow equa-
tions for P(\) and R(u) can be constructed and the fixed-
point distributions obtained [30,32]. In principle, this gives
the long-time behavior of the system. The multiplicative
structure of Egs. (2) and (3) is very important. Under these
transformations, P(\) and R(u) become indefinitely broad at
criticality for any amount of disorder as long as 0<<k,
<1 [30,32,37]. However, for ,,>1 the SDRG becomes
inconsistent for weak disorder because the renormalized cou-
plings are typically bigger than the decimated ones. It is thus
tempting to interpret this result as a runaway flow towards
weak disorder in odds with the field-theoretical results [17].
As we show below, this is not the case. The generation of a
transition rate larger than the decimated ones is unphysical.
The numerical prefactor «,>1 is just an artifact of treating
H, until second order in perturbation theory.

According to Eq. (2), the splitting of the ground multiplet
of Hy due to H, may overcome the distance (\,) between the
two unperturbed multiplets for certain values of u,; even
though w, 3 <\,. Treating Hy+H, exactly, however, this can
never be the case. The ground state has energy 0 and the
excited ones are solutions of the polynomial
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FIG. 1. (Color online) Schematic decimation procedure.

=287+ (€ + popa)x — s\ + 9 =0,  (4)

with é=N,+ u,+ u3. The renormalized healing rate w is thus
its minimal root. Although we could not solve & analytically,
its maximum value is shown to be fi,..=(2—V2)\,, which
happens for w;=u,=\,. Numerical inspections of Eq. (4)
show that g <min{u,,us3,\,} in general.

In addition, the operators connecting this particle cluster
to the rest of the chain have also to be projected onto the

same states. We find that n, 3=a, 377 and Q2,3=a2,3é, where
(I+ertes)anz=l+cy3,  with  (A\+pp3— i)y 3=Nous ).
(Note that 1/2<a,3=<1.) Therefore the SDRG decimation
procedure summarizes in replacing = sNi(7,Q;,1+Qin;y1)
+2io3m:M; by N(n,Q+071) + ZO+N3(7T04+Qny)  with
)’\‘1,3=a2,3)\1,3 (see Fig. 1(a)). The renormalization of A, 3 is
not considered in the usual perturbative SDRG which is in-
deed a “weaker” effect since @, 3 e[1/2,1] and approaches
1 in the strong-disorder limit.

Repeating the same procedure when decimating a healing
rate, Eq. (3) is then replaced by

N=(-X. (5)

with  2{=N+N\+u, and  y=V-\\,, implying X
<min{\;, Ny, o). [Its maximal value N.=pu,(3-15)/2
happens for )\1=)\2=ILL2.] MOreOVer, M1’3=B1’3M1,3, ni3
=5 and Q,3=0; 5 with 48, x({+x)=\(Bus—Nr)+(\
+ uy)(ma+ Ny +2x) and Bs is obtained by exchanging A ; =\,
in B;. (Note that 3/4=< 3, 3=<1.) These results mean we have
to replace

2 Ni(n,Qiy + Qiniy) + E wiM;

i=0,3 i=1,3

by

No(1Q; + Qofty) + M, + N(71, 0, + O\Ty) + M5
+ N\5(71304 + Q3”4),

where fi; 3= 3113 (see Fig. 1(b)). Note that n; 3 (Q; 3) has

no projection onto 73 (é3,1)~ If this was not the case, the
technical treatment of this SDRG would be more difficult
because further-nearest-neighbor interactions would arise.
Long-ranged interactions may point out delocalized states.
Their absence suggests that the SDRG here presented is ame-
nable.

Importantly, there are no level crossings in the entire re-
gion where the parameters of H, are less than or equal to the
parameters of H,, meaning the interpretation of the decima-
tion steps still holds. Also important, the energy difference
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between the second and first excited multiplets (A,;) of H,
+H, only increases when increasing the perturbation and is
always greater than the energy difference between the first
excited and ground multiplets (A,y). Precisely, A =<(I
-1 / V’E)AZI'

Therefore exactly projecting the entire system in the low-
energy states of Hy+H; makes the renormalization-group ap-
proach totally consistent. Whether or not these new recursion
relations drive the system to the universal IRFP is not
straightforwardly clear. This is the question we address in the
next part of this paper.

The fate of the critical point is obtained by solving the
standard flow equations [30,32] for P(\) and R(u) with the
perturbed renormalized rates (2) and (3) replaced by their
exact counterparts (4) and (5) in addition to the weaker

renormalization of the neighboring transition rates (X1,3 and
;3 in Fig. 1). Because of the complicated analytical struc-
ture of these quantities, a detailed analytical solution is ham-
pered. We then rewrite fi=x,mous/\, and N= KN N/ o,
where «, , are functions of the decimated transition rates.

Moreover, we will neglect the renormalizations of )’\vm and

3 [45]. Now, recall that (i) X and & are always less than
the decimated ones and that (ii) there is no correction to H,,
in first order of perturbation theory. Point (i) permits us to set
K,:LJ\=1 in the weak-disorder limit. Hence the system rapidly
flows towards stronger disorder. As intermediate disorder is
reached, the only way of stopping its further growth is mak-
ing all decimations of type f=const X w, [38], which corre-
sponds to corrections in first order of perturbation theory.
Point (ii) thus guarantees there is no hindrance on the flow
towards even stronger disorder, in which limit Kl’m can be
neglected [37]. We thus finally conclude that any amount of
disorder drives the critical system towards the universal
infinite-randomness fixed point.

This conclusion was checked by numerical implementa-
tion of the SDRG for weak- and moderate-disordered chains.
(For consistency with the above proof, the weaker correc-

tions to N, 5 and [, ; were neglected [46].) Following time 7
and length ¢ scales along the critical SDRG flow, the pre-
dicted [29] tunneling exponent =1/2 was confirmed (see
Fig. 2). Here, 7'=Q and & is the density of active particle
clusters. The off-critical Griffiths phases surrounding the
critical point in which 7~ & with disorder-dependent dy-
namical exponent is also confirmed in our numerics [47].
We now address the issue of weak disorder in higher di-
mensions. One key feature hinders a straightforward gener-
alization of the RG steps here proposed: the reconnection of
the lattice. Because the coordination number increases in d
> 1, one eventually needs to treat exactly big particle clus-
ters. Leaving this task open, we cannot guarantee that all the
RG steps will consistently lower the energy scale and drive
the system to an IRFP. However, and somewhat surprisingly,
it was shown that the lattice reconnection does not hinder the
flow towards infinite randomness [31]. As the inconsistency
of the simple recursion relations is just an artifact of the
perturbative treatment, it is then reasonable to conclude that
the RG flows of the directed percolation and the transverse-
field Ising universality classes are the same in the presence of
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FIG. 2. (Color online) Time 7 and length ¢ scales along the
SDRG flow at criticality. Transition rates are drawn from boxlike
distributions as indicated. Chains have 2 X 10° sites and the data
were averaged over 100 disorder realizations. Error bars are about
the symbol size.

disorder in d=2 and 3, as suspected in Ref. [32]. This would
be in agreement with Monte Carlo simulations in d=2 [39],
with the Harris criterion [14-16] and with the field-
theoretical runaway flow solutions [17].

Recently, the experimental realization of the clean di-
rected percolation universality class have been claimed
[13,40]. These experiments now raise another puzzle in the
face of our results and many others [14-17,32,33,39]. We
would like to point out two crossovers which may give an
explanation. One is the time crossover which was stressed in
Ref. [33] (see, e.g., Fig. 7 therein). Because of the logarith-
mically slow dynamics, the “true” steady state takes place
only after a long period of relaxation. The other one is the
clean-dirty crossover length. As in spin chains [41,42], there
is a crossover length below which disorder is irrelevant. The
cleaner the sample the longer the crossover length which
reaches hundreds of sites even for spin chains with moderate
disorder. The time crossover is analogous to the temperature
crossover in spin chains. Only at very low temperatures are
the low-energy states important. The length crossover is
equally analogous. Statistically rare fluctuations (the so-
called large rare regions) only exist on large samples. Natu-
rally, these crossovers are related through the dynamics. In
Ref. [40], the system size is of order of hundreds of degrees
of freedom. It is thus reasonable that the exponents measured
are nonuniversal between the clean and the infinite-
randomness fixed point. (This also may apply to other ex-
periments [12].) The crossover length of the samples in Ref.
[13] seems much bigger.

In the face of the possibility of explaining many experi-
ments, it is thus desirable to study the aforementioned cross-
over of the exponents, which should be accomplished with-
out much effort by Monte Carlo calculations in d=1, for
instance. From the experimental side, it is desirable to pin-
point precisely the source of quenched disorder and to esti-
mate its strength. Border effects may also diminish the effec-
tive size of the sample. Finally, due to the slow relaxation
processes, time measurements have to be carefully taken
when locating the critical point. These studies should shed
considerable light on this problem.

In conclusion, we have modified the usual strong-disorder
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renormalization-group method in order to exactly recast the
low-energy spectrum of the local fast-mode Hamiltonian.
This allowed the method amenable to attack the problem in
the weak-disorder limit in which the perturbative treatment
yielded to runaway flow towards weak disorder. Applications
to quantum spin chains as well as comparison with similar
generalizations will be presented elsewhere.

As discussed in Refs. [30,37], this renormalization-group
method is not justified in the weak-disorder limit. We, how-
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ever, leave open the possibility that, by exactly projecting the
entire Hamiltonian onto the local low-energy spectrum, the
method will correctly point out whether weak disorder is
irrelevant.

We are indebted to T. Vojta, E. Miranda, M.-Y. Lee, and
K. A. Takeuchi for useful discussions. This work was sup-
ported by the NSF under Grants No. DMR-0339147 and
DMR-0506953, and by Research Corporation.
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